
Pohyb hmotného bodu v centrálním silovém poli
V centrálním silovém poli (viz obr. 33) se nachází hmotný bod o hmotnosti m. Vzhledem k tomu,

že se jedná o centrální pole, je síla , která na hmotný bod působí, centrální síla (radiální síla). Tato
síla proto nemá tečnou složku, a popisovaná situace je tedy sféricky symetrická. To znamená, že
k popisu systému lze užít sférické souřadnice (viz obr. 34).

 

Obr. 33 Obr. 34

Zobecněnými  souřadnicemi,  které  budou  popisovat  náš  systém,  tedy  budou  tři  sférické
souřadnice ,  a , kde je r je poloměr uvažované sféry. Tři plně postačují k popisu,
neboť vyšetřujeme pohyb jednoho hmotného bodu v trojrozměrném prostoru a tento pohyb není
omezen žádnou vazbou (viz 3.2.3).

Vztahy mezi zobecněnými souřadnicemi a kartézskými souřadnicemi vyplývají z obr. 34:
;
;

.
Tyto souřadnice závisí na čase. Nyní určíme jejich první derivace podle času:

;

;

.

Nyní můžeme určit kinetickou energii hmotného bodu, který se nachází v centrálním silovém
poli: . Dosazením z přechodních vztahů a následnou úpravou získáme vztah

, (72)

který popisuje kinetickou energii hmotného bodu ve sférických souřadnicích vždy, bez ohledu na
další charakteristiky konkrétní úlohy.
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Kinetická  energie  hmotného  bodu  vždy  musí  obsahovat  všechny  zavedené  zobecněné
rychlosti  (pro ), ale nemusí obsahovat nutně všechny zobecněné souřadnice . Tyto
souřadnice,  které  nejsou  ve  vztahu  pro  kinetickou  energii  (resp.  ve  vztahu  pro  lagrangián)
obsaženy, usnadňují další výpočty. Těmto souřadnicím se říká cyklické souřadnice.

Jednotlivé členy, které vystupují v závorce vztahu (72) přitom mají svůj fyzikální význam - jedná
o rychlosti, příslušející dané zobecněné souřadnici:

1.     člen  určuje velikost radiální rychlosti, tj. rychlosti jakou se těleso o hmotnosti m
přibližuje (resp. vzdaluje) hmotnému centru;

2.     člen  odpovídá velikosti rychlosti ve směru souřadnice ;
Na povrchu Země se jedná o velikost rychlosti, kterou se hmotný bod pohybuje v severojižním

směru.
3.     člen  odpovídá velikosti rychlosti ve směru souřadnice .

Na povrchu Země se tedy jedná o velikost rychlosti, kterou se hmotný bod pohybuje ve směru
východ - západ.  je poloměr kružnice, po níž se hmotný bod v tomto směru pohybuje (tj.
poloměr dané rovnoběžky, po níž se hmotný bod pohybuje) a  je velikost úhlové rychlosti, s jakou
se mění úhel .

To tedy znamená, že vektory ,  a  definují lokální kartézský systém na sféře.

V právě řešené úloze by bylo možné určit kinetickou energii (resp. celkovou velikost rychlosti
hmotného bodu) na základě geometrického rozboru situace. Ale v obecném případě geometrický
rozbor nemusí být tak zřejmý a názorný jako v tomto speciálním případě.

Ve vztazích pro velikosti rychlostí ve směru jednotlivých zobecněných souřadnic lze v tomto
případě najít tzv. Laméovy koeficienty: 1, r a .

Jsou to ty koeficienty, kterými se násobí derivace příslušné zobecněné souřadnice.
Každé centrální pole je konzervativní, neboť síla v něm působí radiálně a je závislá pouze na

vzdálenosti (ne na funkci vzdálenosti) od hmotného centra daného centrálního silového pole. Proto
má toto  pole  potenciální  energii  V,  která  je  závislá  pouze  na  vzdálenosti  hmotného bodu od

hmotného centra pole. Podle vztahu (42) je ,  a .

Úměra místo operátoru „=“ je ve vztazích pro  a  proto, že ve výpočtu chybí Laméovy
koeficienty.

Vzhledem k tomu, že úlohu vyšetřujeme v centrálním poli, jehož potenciální energie závisí jen

na vzdálenosti od hmotného centra, je . A tedy

. (73)

Nyní můžeme psát Lagrangeovu funkci (48) ve tvaru

. (74)

Pro jednotlivé derivace, které jsou nutné pro sestavení Lagrangeových rovnic druhého druhu,
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dostaneme:

 a ;

 a ;

 a .

Tyto derivace byly určeny za „vypnutého času“ a tedy parametry r, , , ,  a  byly
navzájem nezávislé parametry. Nyní čas zapneme a bude platit ,  a .

Časové derivace derivací lagrangiánu derivovaného již podle zobecněných rychlostí ,  a 
 jsou:

;

 -  důvod,  proč  tento  výraz  zapisujeme  jen  symbolicky,  vyplyne  po

sepsání Lagrangeových rovnic druhého druhu.
Nyní již můžeme napsat Lagrangeovy rovnice druhého druhu pro uvažovanou situaci. Dosadíme

tedy do (47) a získáme:

, (75)

(76)

a

. (77)

Z rovnice (77) vyplývá, proč jsme časovou derivaci lagrangiánu derivovaného podle zobecněné
rychlosti  pouze naznačili. Rovnice (77) zapsaná v této podobě je snadno řešitelná a jejím řešením
je

(78)

Rovnice (78) je matematickým vyjádřením zákona zachování momentu hybnosti v centrálním
silovém poli.

Na základě pozorování lze tvrdit:
POHYB V KAŽDÉM CENTRÁLNÍM POLI  JE  NUTNĚ POHYB ROVINNÝ.

Pokud se povede toto dokázat, pak lze k popisu pohybu hmotného bodu v centrálním poli použít
pouze dvě souřadnice, tj. lze přejít od sférických souřadnic k polárním souřadnicím.
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Obr. 35

Zvolme bez  újmy  na  obecnosti  počáteční  podmínky  pohybu  tak,  že   a  .

Polohový vektor  a vektor počáteční rychlosti  pohybu hmotného bodu jsou kolineární a určují
tedy rovinu . (Pokud by kolineární nebyly, vybrali bychom jednu z rovin, v níž oba leží). Kartézskou
soustavu souřadnic lze volit libovolně - proto (bez újmy na obecnosti) ji zvolíme tak, že osy x a y leží
v rovině  a osa z je k této rovině kolmá (viz obr. 35). Tedy tak, že .

Nyní je zřejmý význam veličiny  - určuje velikost rychlosti nárůstu odchylky pohybujícího
se hmotného bodu od roviny . Jestliže jsme zvolili  pak to znamená, že v čase  zůstává
hmotný bod v rovině .

Přepsáním  rovnice  (76)  v  čase   získáme  ,  tedy  .
Dostáváme tak , což znamená, že velikost zrychlení hmotného bodu ve směru mimo rovinu 
 je nulové. Hmotný bod tedy zůstává v rovině , což je tzv. rovina ekliptiky.

Tedy  v každém časovém okamžiku.

Řešením rovnice (77), jak bylo již uvedeno, je vztah (78), který představuje zákon zachování
momentu hybnosti. Jestliže se ale moment hybnosti zachovává (tj. nemění se ani jeho velikost, ani
jeho směr), pak je pohyb hmotného bodu nutně rovinný. A navíc směr momentu hybnosti je kolmý
k rovině, v níž se hmotný bod pohybuje.

Proto lze místo sférických souřadnic r,  ,   použít polární souřadnice r,  ,  čímž získáme
Lagrangeovu funkci (74) ve tvaru

, (79)

kde  představuje velikost radiální rychlosti (tj. velikost rychlosti vzdalování od hmotného centra
centrální pole) a  je velikost tečné rychlosti, tj. velikost rychlosti pohybu hmotného bodu po křivce
v rovině.

Je důležité si uvědomit, že přechod z třírozměrného popisu systému do dvourozměrného popisu
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systému, tj. přechod od lagrangiánu ve tvaru (74) k lagrangiánu ve tvaru (79) není obecně triviální a
je  jistější  přepočítat  celou  úlohu  (kinetickou  energii,  potenciální  energii,  …)  znovu.  V  námi
vyšetřované úloze to bylo možné, protože jsme používali kartézské souřadnice a z geometrického
náhledu byla situace jasná.
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