Pohyb hmotného bodu v centralnim silovém poli

V centralnim silovém poli (viz obr. 33) se nachazi hmotny bod o hmotnosti m. Vzhledem k tomu,
Ze se jedna o centralni pole, je sila ¥, kterd na hmotny bod plsobi, centralini sila (radialni sila). Tato
sila proto nema tec¢nou slozku, a popisovana situace je tedy sféricky symetricka. To znamena, ze
k popisu systému lze uzit sférické souradnice (viz obr. 34).
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Obr. 33 Obr. 34

Zobecnénymi soufadnicemi, které budou popisovat nas systém, tedy budou tri sférické
soufadnice g'=vr, g*=# a ¢° =¢, kde je r je polomé&r uvazované sféry. Tfi pIné postacuji k popisu,
nebot vySetfujeme pohyb jednoho hmotného bodu v trojrozmérném prostoru a tento pohyb neni
omezen zadnou vazbou (viz 3.2.3).

Vztahy mezi zobecnénymi souradnicemi a kartézskymi souradnicemi vyplyvaiji z obr. 34:

wt=x=rdn Hcosg;

1 =y =rdn deng;

¥ =z=rcosd.

Tyto souradnice zavisi na ¢ase. Nyni ur¢ime jejich prvni derivace podle Casu:
1
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—=F=rroosd-rdand.
Nyni mdzeme urcit kinetickou energii hmotného bodu, ktery se nachdazi v centralnim silovém

poli: T = —m(x +J +z:‘) Dosazenim z prechodnich vztah( a naslednou Upravou ziskdme vztah

1 .
r=om {r‘* +r 28 42 5? sin® st) , (72)

ktery popisuje kinetickou energii hmotného bodu ve sférickych souradnicich vzdy, bez ohledu na
dalsi charakteristiky konkrétni Glohy.
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Kineticka energie hmotného bodu vzdy musi obsahovat vSechny zavedené zobecnéné
rychlosti & (pro J=L2...n), ale nemusi obsahovat nutné véechny zobecnéné soufadnice g'. Tyto
souradnice, které nejsou ve vztahu pro kinetickou energii (resp. ve vztahu pro lagrangian)
obsazeny, usnadnuji dalSi vypocty. Témto souradnicim se rika cyklické souradnice.

Jednotlivé ¢leny, které vystupuji v zavorce vztahu (72) pfitom maji sv{j fyzikaIni vyznam - jedna
o rychlosti, prislusejici dané zobecnéné souradnici:
1. clen v =7# urCuje velikost radialni rychlosti, tj. rychlosti jakou se téleso o hmotnosti m
priblizuje (resp. vzdaluje) hmotnému centru;
2. Clen v, =r& odpovida velikosti rychlosti ve sméru soufadnice #;

Na povrchu Zemé se jedna o velikost rychlosti, kterou se hmotny bod pohybuje v severojiznim
Sméru.

3. (Clen v, =r@sind odpovida velikosti rychlosti ve sméru souradnice # .

Na povrchu Zemé se tedy jedna o velikost rychlosti, kterou se hmotny bod pohybuje ve sméru
vychod - zadpad. rsin# je polomér kruznice, po niz se hmotny bod v tomto sméru pohybuje (tj.
polomér dané rovnobézky, po niz se hmotny bod pohybuje) a # je velikost Uhlové rychlosti, s jakou
se méni Uhel #.

To tedy znamend, ze vektory v, , v, a v_q: definuji lokalni kartézsky systém na sfére.

V pravé reSené Uloze by bylo mozné urcit kinetickou energii (resp. celkovou velikost rychlosti
hmotného bodu) na zdkladé geometrického rozboru situace. Ale v obecném pripadé geometricky
rozbor nemusi byt tak zfejmy a nazorny jako v tomto specialnim pripadé.

Ve vztazich pro velikosti rychlosti ve sméru jednotlivych zobecnénych souradnic Ize v tomto
pripadé najit tzv. Laméovy koeficienty: 1, ra rsin .

Jsou to ty koeficienty, kterymi se nasobi derivace prislusné zobecnéné souradnice.

Kazdé centraini pole je konzervativni, nebot sila v ném plsobi radidlné a je zavisla pouze na
vzdalenosti (ne na funkci vzdalenosti) od hmotného centra daného centralniho silového pole. Proto
ma toto pole potencidlni energii V, kterad je zavisla pouze na vzdalenosti hmotného bodu od

L . ay ar av
F = —-— F - F [r J—
hmotného centra pole. Podle vztahu (42) je E 5 7E g 2% 3y
Uméra misto operatoru ,,=" je ve vztazich pro &% a F; proto, Zze ve vypoctu chybi Laméovy

koeficienty.

Vzhledem k tomu, Ze Glohu vySetfujeme v centralnim poli, jehoZ potencialni energie zavisi jen

ar

. . . . ar
na vzdalenosti od hmotného centra, je 3o £=D . A tedy

Flr)=-2(0). (73)

Nyni mlzeme psat Lagrangeovu funkci (48) ve tvaru

L=;—m[r'2+r292 +r2¢5351‘n3 9}—}’(1‘}. (74)

Pro jednotlivé derivace, které jsou nutné pro sestaveni Lagrangeovych rovnic druhého druhu,
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dostaneme:
3L : aL ; T dF
Zemr g —==mr#F +mrgain® 8- ;
a3r ar d dr ( :I

a—;=mr29 a %=mr2¢ijsin5'-cns19-;

38 ag

?=mr3¢:sin39 a s—L=n,
Tyto derivace byly urceny za ,vypnutého ¢asu” a tedy parametry r, &, #, ¥, 4 a @ byly
dg ) E(f} .

2 Y 7 53 oo dr ;
navzajem nezavislé parametry. Nyni ¢as zapneme a bude platit » = E(f}, 9=E(f} ag=—

Casové derivace derivaci lagrangianu derivovaného jiz podle zobecnénych rychlosti 7, 4 a &
jsou:

d 3L .
— = |=mF
de | o !

E{a—;J=mr2§-+2mrf§-
drlaa
daLl d 2. .3 o y , C . .
g =E[mr Fan 9) - duvod, proc tento vyraz zapisujeme jen symbolicky, vyplyne po
sepsani Lagrangeovych rovnic druhého druhu.

Nyni jiz mGzeme napsat Lagrangeovy rovnice druhého druhu pro uvazovanou situaci. Dosadime

tedy do (47) a ziskame:

mi —mr & —mrg® dn? 9+%[r:l=ﬂ, (75)
rard St 2y S— v i sin ooz H=10 (76)
a
i{:fzf:rznz;':rsin2 9-) =0 (77)
g .

Z rovnice (77) vyplyva, proC jsme Casovou derivaci lagrangianu derivovaného podle zobecnéné
rychlosti # pouze naznacili. Rovnice (77) zapsana v této podobé je snadno resitelna a jejim reSenim
je

rar?pein® &= lonst. (78)

Rovnice (78) je matematickym vyjadienim zakona zachovani momentu hybnosti v centrainim
silovém poli.

Na zadkladé pozorovani Ize tvrdit:

POHYB V KAZDEM CENTRALNIM POLI JE NUTNE POHYB ROVINNY.

Pokud se povede toto dokazat, pak Ize k popisu pohybu hmotného bodu v centralnim poli pouzit
pouze dveé souradnice, tj. Ize prejit od sférickych souradnic k polarnim souradnicim.
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Obr. 35

Zvolme bez GUjmy na obecnosti pocatecni podminky pohybu tak, ze S[fuj=% a 9f)=0,

Polohovy vektor # a vektor poc¢atecni rychlosti w, pohybu hmotného bodu jsou kolinedrni a uréujf
tedy rovinu = . (Pokud by kolinearni nebyly, vybrali bychom jednu z rovin, v niz oba lezi). Kartézskou
soustavu souradnic Ize volit libovolné - proto (bez Gjmy na obecnosti) ji zvolime tak, Zze osy x a y lezi

vroviné & a osa z je k této roviné kolma (viz obr. 35). Tedy tak, ze &(f)==.

Nyni je zfejmy vyznam veli¢iny #(t) - uréuje velikost rychlosti nardstu odchylky pohybujiciho
se hmotného bodu od roviny = . Jestlize jsme zvolili #(#)=0 pak to znameng, ze v ¢ase #, zlistava
hmotny bod v roviné = .

Pfepsanim rovnice (76) v ¢ase f; ziskdme mr?f+2mrr.0- mrig sin,gcnsgﬂ, tedy mrid=0.

Dostavame tak d=0, coz znamena, ze velikost zrychleni hmotného bodu ve sméru mimo rovinu
je nulové. Hmotny bod tedy z{stava v roviné =, coz je tzv. rovina ekliptiky.

Tedy 3=% v kazdém c¢asovém okamziku.

Redenim rovnice (77), jak bylo jiz uvedeno, je vztah (78), ktery pfedstavuje zakon zachovani
momentu hybnosti. Jestlize se ale moment hybnosti zachovava (tj. neméni se ani jeho velikost, ani
jeho smér), pak je pohyb hmotného bodu nutné rovinny. A navic smér momentu hybnosti je kolmy
k roving, v niz se hmotny bod pohybuije.

Proto Ize misto sférickych souradnic r, #, # pouzit polarni soufadnice r, #, ¢imz ziskdme
Lagrangeovu funkci (74) ve tvaru

L=;—m{r'2+r2¢:2)—5’lzrj, (79)

kde 7 predstavuje velikost radialni rychlosti (tj. velikost rychlosti vzdalovani od hmotného centra
centralni pole) a *# je velikost te¢né rychlosti, tj. velikost rychlosti pohybu hmotného bodu po kfivce
Vv rovine.

Je dilezité si uvédomit, Ze prechod z tfirozmérného popisu systému do dvourozmérného popisu
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systému, tj. pfechod od lagrangianu ve tvaru (74) k lagrangianu ve tvaru (79) neni obecné trivialni a
je jistéjsi prepocitat celou Ulohu (kinetickou energii, potencialni energii, ...) znovu. V nami
vySetfované Uloze to bylo mozné, protoze jsme pouzivali kartézské souradnice a z geometrického

nahledu byla situace jasna.
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