
Fundamentální Poissonovy závorky
Dříve,  než uvedeme speciální  Poissonovy závorky a jejich fyzikální  aplikace,  připomeneme

platnost jedné identity.
PRO FUNKCI   DEFINOVANOU VE FÁZOVÉM PROSTORU PLATÍ

. (203)

Důkaz vztahu (203) vyplývá ze vztahu (199). Poissonovy závorky jsou antisymetrickou operací
aplikovanou na dvě funkce (v tomto případě na dvě identické funkce f). Existuje jediné číslo (a to
číslo 0), které se rovná svému opačnému číslu. Podle vztahu (199) se totiž při změně pořadí funkcí,
na které aplikujeme Poissonovy závorky, mění jejich znaménko. Proto .

Dosadíme-li nyní za obecné funkce f a g, pro které jsme vztahem (198) definovali Poissonovy
závorky, zobecněné souřadnice  a kanonické hybnosti  můžeme vyslovit tvrzení.

PRO POISSONOVY ZÁVORKY APLIKOVANÉ NA ZOBECNĚNÉ SOUŘADNICE  A  NA

KANONICKÉ HYBNOSTI   PLATÍ  TYTO VZTAHY

,  a (204)

PRO  ,  KDE   JE  POČET  STUPŇŮ  VOLNOSTI  DANÉHO  SYSTÉMU .
Důkaz prvních dvou částí tvrzení je snadný: zobecněné souřadnice  a kanonické hybnosti 

 jsou (pro všechny možné kombinace přípustných indexů) navzájem nezávislé. Uvědomíme-li si, že
v definici Poissonových závorek (198) vystupují parciální derivace jak podle zobecněné souřadnice,
tak podle kanonické hybnosti, je jasné, že výsledkem musí být nula.

Při derivaci funkce podle proměnné, na které daná funkce nezávisí, dostáváme nulu, neboť
v dané proměnné (podle níž derivujeme) je funkce konstantní. A derivace konstanty je nula. Proto
i derivace zobecněné souřadnice podle kanonické hybnosti (resp. naopak) je nulová.

Důkaz  posledního  ze  vztahů  (204)  vyplývá  z  definice  Poissonových  závorek  (198):

.

Z definičního vztahu Poissonových závorek tedy zůstane jen první člen (druhý je identicky
roven nule).  A  v  závislosti  na tom,  zda budeme mít  zobecněné souřadnice (resp.  kanonické
hybnosti)  stejné  či  různé,  získáme  výsledek  jedna  nebo  nule,  což  zapíšeme  symbolem  
 (Kroneckerovo delta).

Této vlastnosti Poissonových závorek sestavených ze zobecněných souřadnic a kanonických
hybností se využívá v kvantové mechanice. Pomocí zobecněných souřadnic a kanonických hybností
se definují příslušné operátory a získáme vztah analogický Poissonovým závorkám: .
Z tohoto vztahu pak také vyplývá principiální nemožnost měřit současně libovolně přesně polohu a
hybnost částice, což popisují tzv. Heisenbergovy relace neurčitosti.

Na základě Poissonových závorek lze dokázat následující tvrzení. Toto tvrzení i jeho důsledky
pomohou při řešení řady úloh.

PRO SKUTEČNÝ POHYB PLATÍ

, (205)
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KDE   (PRO  )  JE  LIBOVOLNÁ  FUNKCE  DEFINOVANÁ  NA  FÁZOVÉM

PROSTORU  A   JE  HAMILTONIÁN  UVAŽOVANÉHO  SYSTÉMU .
Fráze „pro skutečný pohyb“ znamená, že funkce f  splňuje Hamiltonovy kanonické rovnice

(174).
Důkaz tvrzení provedeme rozepsáním totální derivace funkce  podle času. Platí

.  S  využitím Hamiltonových kanonických rovnic  můžeme dále  psát

 a dále upravit s využitím definičního vztahu Poissonových závorek

(198). Takže dostaneme , což je vztah, jehož platnost jsme chtěli dokázat.

Prvním důsledkem právě uvedeného tvrzení je podmínka, za které se funkce f stává integrálem
pohybu.

Najít  integrál  pohybu je  důležité,  neboť  každý integrál  pohybu zjednoduší  hledání  řešení
Lagrangeových rovnic druhého druhu.

NENÍ-L I  FUNKCE  ZÁVISLÁ NA ČASE,  PAK TATO FUNKCE JE

INTEGRÁLEM POHYBU PRÁVĚ TEHDY,  KDYŽ .

Funkce  f  nesmí  tedy  záviset  na  čase  přímo;  na  čase  ovšem mohou  záviset  zobecněné
souřadnice nebo kanonické hybnosti, na kterých je závislá funkce f.

Nezávisí-li funkce f explicitně na čase, pak . To ovšem znamená, že na základě vztahu (

205) můžeme psát . Dále víme, že funkce f je integrálem pohybu, jestliže platí vztah

. V tom případě ale .

Tento důsledek poskytuje návod na hledání integrálů pohybu: stačí ověřit, zda pro nějakou
funkci f, která popisuje daný fyzikální systém s hamiltoniánem H, platí . Pokud ano, je
funkce f integrálem pohybu.

Druhý důsledek vztahu (205) dává návod na určení, kdy sám hamiltonián daného systému je
integrálem pohybu.

ČASOVĚ NEZÁVISLÝ HAMILTONIÁN  DANÉHO FYZIKÁLNÍHO SYSTÉMU JE
INTEGRÁLEM POHYBU.

Na základě vztahu (203) můžeme psát  a skutečnost, že hamiltonián je nezávislý na

čase, můžeme přepsat podmínkou . Na základě vztahu (205), do kterého dosadíme ,

pak  můžeme  psát  .  Podmínka   přitom  určuje,  že  hamiltonián  H  je
integrálem pohybu.

Právě uvedený důsledek souvisí s tím, že pokud je lagrangián L daného fyzikálního systému
časově nezávislý, zachovává se zobecněná energie h definovaná vztahem (81). Časová nezávislost
hamiltoniánu H pak souvisí se zákonem zachování mechanické energie E.

Třetí  důsledek  vztahu  (205)  udává  podmínky,  za  kterých  je  integrálem  pohybu  přímo
Poissonova závorka.

POKUD FUNKCE  A   JSOU INTEGRÁLY POHYBU,  PAK 
 JE  TAKÉ INTEGRÁLEM POHYBU.

V argumentech funkcí f a g již neuvádíme jako parametr čas, protože mají-li být funkce f a g
integrály pohybu, pak na čase záviset nesmí!
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Při  důkazu opět vyjdeme ze vztahu (205),  který aplikujeme na Poissonovu závorku :

, neboť jestliže jsou funkce f a g nezávislé na čase, je na

čase nezávislá též jejich Poissonova závorka , tedy . S využitím Jacobiho identity

(201)  můžeme  dále  psát  .  Jsou-li  f  a  g  integrály

pohybu,  pak  pro  ně  platí   a  ,  takže  .  To  ovšem

znamená, že Poissonova závorka  je integrálem pohybu. A to jsme měli dokázat.
Právě uvedeným způsobem by bylo  možné přidávat  postupně další  funkce,  které  by byly

integrály pohybu, a tak vytvořit obecně třeba i nekonečně mnoho integrálů pohybu. Ovšem integrálů
pohybu, které pomohou při řešení pohybových rovnic, může být maximálně jen tolik, kolik je stupňů
volnosti daného fyzikálního systému. Metoda Poissonových závorek, kterou jsme právě uvedli, tak
totiž generuje i takové funkce, které jsou sice integrály pohybu, ale jsou lineárními kombinacemi již
existujících integrálů pohybu nebo jsou nulové. A takové integrály pohybu již dále při řešení úloh
nepomohou. Ale i přesto je právě uvedená konstrukce integrálů pohybu velmi důležitá.
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