
Zavedení úhlové rychlosti
Uvažujme libovolný časově závislý vektor , který budeme zkoumat jak v pevné bázi ,

tak v korotující bázi .

Korotující báze  je skutečně závislá na čase, neboť rotuje spolu s tuhým tělesem.

Souřadnice  resp.  vektoru  můžeme vyjádřit v obou uvažovaných bázích pomocí
vztahů

(229)

resp.

. (230)

Ve vztahu (230) se mění v závislosti na čase jak souřadnice uvažovaného vektoru, tak vektory
korotující báze. Pro bázové vektory obou bází přitom platí vztahy

 a (231)

a dále platí

. (232)

Vztahy (231) a (232) jsou analogické jako vztahy (226) a (227) jsou jen přepsány ve vhodných
indexech  pro  další  odvozování.  Pro  časovou  změnu  vektoru   vůči  pevnému  inerciálnímu
systému můžeme postupně psát:

. (233)

Vektor  popisujeme vzhledem k pevnému inerciálnímu systému, ale vyjádřili jsme ho jak
z hlediska pevné báze, tak z hlediska korotující báze.

Byly by další dvě možnosti, jak situaci vyšetřovat: definovat vektor vzhledem k soustavě, která
se pohybuje spolu s tuhým tělesem a vyjádřit ho jak v korotující bázi (její vektory by se v čase
neměnily), tak v pevné bázi, jejíž vektory by se tentokráte měnily. Vztažná soustava by se totiž
vůči pevné bázi pohybovala.

S  využ i t ím  obou  vz tahů  (231 ) ,  můžeme  vz tah  ( 233 )  p řepsa t  ve  t va ru

. Dostáváme tedy vztah

, (234)

v němž jsme označili

. (235)
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Vztah (235) lze též zapsat v ekvivalentním tvaru

; (236)

zavedli jsme tedy matici  s prvky  definovanými vztahem (235).

Důvod, proč je matice značená bez čárky a její prvky s čárkou, bude vysvětlen později.

Lze vyslovit následující tvrzení:
MATICE  JE  ANTISYMETRICKÁ.

Toto tvrzení snadno dokážeme. Prvky matice  splňují relace ortogonality (232), neboť na
základě nich byla matice  odvozena. Časovou derivací vztahu (232) dostaneme ,

odkud  vyjádříme  .  Vzhledem  k  symetričnosti  matice  A  můžeme  psát

 a na základě vztahu (235) dostaneme , což znamená, že matice  je
antisymetrická a má tedy jen tři nezávislé prvky. Podle právě odvozeného vztahu je zřejmé, že na
hlavní diagonále matice  jsou nuly, takže zbývá určit její tři nezávislé prvky. Ostatní tři jsou již
jednoznačně určeny - jsou to opačná čísla k číslům vyjadřující ony tři nezávislé prvky uvažované
matice.

Proto  můžeme provést  tzv.  přirozené  mapování  (přirozené  zobrazení,  operaci  duality),  při
kterém antisymetrické matici přiřadíme vektor  se složkami:

, (237)

kde   je  Lewi-Civitův  symbol  (Lewi-Civitův  tenzor).  Provedeme-li  naznačený  součet  podle
proměnné k, dostaneme

. (238)

Pro i-tou složku vektoru  můžeme totiž psát ,
přičemž jsme nepsali ty členy, které rovnou obsahují dva stejné indexy (např. ). Lewi-Civitiův
symbol, který má dva indexy stejné, je totiž nulový.

Vektor  definovaný vztahem (237) je vektor úhlové rychlosti otáčení tuhého tělesa.
K vektoru  je nutné uvést několik poznámek:

1.      je duální pseudovektor a to proto, že přirozené mapování provedené vztahem (
237) (tj. definice jednotlivých složek vektoru ) není jednoznačné: při změně
levotočivé báze na pravotočivou bázi (nebo naopak) se změní znaménka jeho souřadnic.
Tato změna znamének by ale neměla nastávat často - ve fyzice se k popisu
pohybujících se hmotných bodů a těles používá levotočivý kartézský systém souřadnic
(tj. ten, který má osy x, y a z orientovány podle pravidla pravé ruky). Skutečnost, že 
 je pseudovektor vyplývá z toho, že i Levi-Civitův symbol  je pseudovektor.

2.     Přiřazení pomocí vztahu (237) lze korektně provést jen ve trojrozměrném prostoru,
neboť matice  má tři nezávislé prvky a vektor  má také tři nezávislé složky.

V  teorii  relativity,  v  teorii  elektromagnetického  pole  a  dalších  oborech  fyziky  je  nutné
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popisované přiřazení provést tak, že matici přiřadíme matici (nikoliv vektor).

3.     Vektor  má složky definované vůči korotující bázi , proto jsou jeho složky
i prvky matice  označeny symboly  resp. .

Tím je vysvětlen zdánlivý rozpor ve značení ve vztazích (235) a (236).
Analogicky lze vytvořit z vektoru matici, tj. napsat ke vztahu (237) duální vztah ve tvaru

. (239)

Ve vztahu (239) ve srovnání se vztahem (237) chybí činitel 0,5. To proto, že na levé straně
vztahu (239) je veličina indexovaná dvěma indexy a existuje tedy jediná možnost přiřazení.

Nyní budeme pokračovat v úpravě vztahu (234), ve kterém nejdříve provedeme záměnu indexů:

.

Tato úprava se používá proto, aby se zpřehlednil zápis daného vztahu nebo aby se sjednotilo
značení indexů u veličin, které spolu souvisejí.

Dosazením  ze  vztahu  (239)  získáme  .  Provedením  cyklické

záměny indexů Levi-Civitova symbolu dostaneme . Souřadnici 

 vektoru  můžeme v daném součinu umístit na jakékoliv místo, neboť  je složka vektoru (tedy
číslo). Další úpravou je využití definice vektorového součinu:

. (240)

Tento  vztah  popisuje  časovou  derivaci  libovolného  vektoru   vzhledem  ke  zvolenému
inerciálnímu systému v  prostoru  vyjádřenou  v  korotující  bázi  .  V  právě  uvedeném vztahu

popisuje člen  změnu vektoru , jehož souřadnice jsou definovány vztahy (229) a (230),

vůči  korotující  bázi   a  člen   odpovídá  přechodu  mezi  dvěma  bázemi  při  popisu
uvažovaného tuhého tělesa rotujícího úhlovou rychlostí .

 
Platí-li daný vztah mezi určitými vektory v jedné bázi, platí v každé bázi. Proto můžeme psát

(241)

bez ohledu na konkrétní bázi.
Tento vztah je velmi důležitý, a proto vyžaduje několik komentářů:

1.      a  jsou dva různé vektory, nikoliv jeden vektor vyjádřený v různých bázích;

2.     pokud zvolíme , kde  je polohový vektor popisující polohu objektu na rotujícím

tuhém tělesu, pak člen  definuje rychlost pohybu hmotného bodu na tuhém

tělese vůči vnějšímu pozorovateli;

3.     při stejné volbě pak člen  definuje rychlost pohybu hmotného bodu na
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tuhém tělese vůči tomuto tuhému tělesu

Obr. 60

Můžeme si představit situaci zobrazenou na obr. 60. Po kolotoči se pohybuje technik a jeho
pohyb pozoruje dítě na kolotoči i pozorovatel mimo kolotoč. Dítě na kolotoči vnímá pouze vlastní

pohyb technika vůči kolotoči (popsaný výrazem ), zatímco pozorovatel zvenčí vidí

rotační  pohyb technika na kolotoči:  k  tomu,  co pozoruje  dítě  musí  přidat  ještě  oběžný pohyb
kolotoče (člen  ve výrazu (241)).

Kolotoč zobrazený na obr. 60 představuje speciální otáčení: otáčení s pevnou osou (rotace
s pevnou osou).
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