Encyklopedie fyziky |
|
V současnosti má velký význam právě neutronové záření, které nevzniká u přírodních radionuklidů či umělých radionuklidů, ale lze je vyvolat uměle v jaderných reaktorech nebo při jaderné explozi. Proud rychle letících neutronů má vysokou pronikavost, protože nenese elektrický náboj a nemůže tedy ztrácet energii přímou ionizací atomů. Interakce s elektronovými obaly atomů je tedy minimální, reaguje pouze s atomovými jádry. Malé a husté atomové jádro se ale nachází v relativně prázdném prostoru. Poměr velikosti jádra a obalu je řádově , tj. pravděpodobnost, že se neutron srazí s jádrem je .
Letící neutron „vidí“ jádro jako kruh o ploše řádově krát menší než je plocha příčného řezu celého atomu (před vletem neutronu do atomu se mu atom jevil jako kruh s průřezem 1). To ale znamená, že neutron musí proletět řádově atomů, než průměrně jednou zareaguje.
S atomovým jádrem může neutron reagovat:
1. pružnými srážkami - jádrům předává část své kinetické energie, čímž se neutron zpomalí. Zpomalení bude tím větší, čím je hmotnost jader bližší hmotnosti neutronu. Při pružné srážce částice s velmi malou hmotností s částicí s velmi velkou hmotností, k předání energie téměř nedochází.
Při srážce např. pingpongového míčku s těžkou železnou koulí bude změna kinetické energie koule velmi malá!
2. nepružnými srážkami - při nich se mohou z jader uvolňovat i nabité částice.
Při nepružné srážce se neutron s jádrem spojí. Jádro se tak může dostat do nestabilního stavu; k obnovení stabilního stavu se zbaví části energie tak, že vyzáří částici.
K ochraně před neutrony je třeba volit materiály, obsahující vodík a jádra lehkých prvků - voda, parafin, beton, … Takové materiály totiž neutrony dobře pohlcují.