Hlavní strana » OPTIKA » VLNOVÁ OPTIKA » Polarizace světla » Polarizace odrazem a lomem
»

Polarizace odrazem a lomem

Dopadá-li nepolarizované světlo na rozhraní dvou prostředí pod určitým úhlem , polarizuje se tak, že v odraženém světle kmitá vektor  v kmitové rovině převážně kolmo k rovině dopadu (tj. v přímce rovnoběžné s rovinou rozhraní). Polarizace odraženého světla je jen částečná a závisí na úhlu dopadu světla. Odražené světlo je úplně polarizované jen při určitém úhlu dopadu, který závisí na indexu lomu uvažovaných dvou prostředí.

Svírá-li směr odražené světelné vlny a vlny lomené úhel , je odražené světlo polarizováno úplně a lomené světlo jen částečně, ale převládá v něm jeden směr kmitání vektoru  (viz obr. 59); tento směr je kolmý na směr, ve kterém kmitá vektor  v odraženém světle.

Poznámka: Na obr. 59 je tečkami vyznačen směr kmitání vektoru  v rovině kolmé k rovině dopadu (tj. rovnoběžně s rozhraním uvažovaných prostředí); krátkými úsečkami je vyznačen směr kmitání vektoru  ve směru kolmém na právě popsaný směr (směr kmitání vyznačený krátkými úsečkami leží v rovině dopadu).

Obr. 59

K popsanému jevu dochází při úhlu dopadu , který se nazývá Brewsterův úhel dopadu. Svírají-li směry dopadající a lomené vlny , je možné (podle obr. 59) psát , a tedy . Snellův zákon lomu lze psát ve tvaru . Po dosazení dostaneme , což lze s využitím vlastností goniometrických funkcí přepsat ve tvaru . Poslední úpravou získáme vztah pro závislost Brewsterova úhlu dopadu na indexech lomů uvažovaných prostředí: .

Kvalitnější polarizace lze dosáhnout opakovaným odrazem (resp. lomem).

Multimedialní obsah

odraz a lom [4 kB] [Uložit] Audio č.1 [398.82 kB] [Uložit]